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Manifolds which do not allow orientation-reversing maps to themselves have
been known for a long time. Textbook examples are the complex projective
spaces CP2n in dimensions that are divisible by 4 and some lens spaces in di-
mensions congruent 3 modulo 4. Apart from these well-known examples, only
sparse results were known (see below for some of them), so my PhD project is
dedicated to the following question:

When does a manifold not admit an orientation-reversing map to itself?

In the following, if not otherwise stated, we deal always with closed, connec-
ted, orientable, smooth manifolds. The question whether orientation reversal is
possible can be asked in various categories, as one can require the map of de-
gree −1 to be a homeomorphism or diffeomorphism. The following figure lists
the categories that were considered, as well as the interrelations between them.
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Note that the bordism question was solved completely (the final step is due
to Wall [6]): A manifold is oriented bordant to its negative if and only if all its
Pontrjagin numbers vanish.
A manifold is called chiral or amphicheiral according to whether the ori-

entation cannot or can be reversed by a self-map (in one of the above cat-
egories and to be specified in each context). In fact, instances are known
where these categories differ: some lens spaces are amphicheiral by a homo-
topy equivalence but not by a homeomorphism, and some exotic homotopy
spheres are “topologically amphicheiral” but “smoothly chiral”, i. e. there exists
an orientation-reversing homeomorphism but no diffeomorphism. The terms
“chiral” and “amphicheiral” are used because of parallels between the topology
of 3-dimensional manifolds and knot theory, where these notions already exist.
In low dimensions, the following facts are easily available: in dimension zero,

a single point is chiral. In dimension 1 and 2, all (closed, orientable, . . .) mani-
folds are smoothly amphicheiral. One can choose, e. g., the reflection at the
equator of the circle or the “equatorial” plane in an appropriate embedding of
an oriented surface in R3 as an orientation-reversing involution.
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Own results

Previously, it was not known whether there exist chiral manifolds in every di-
mension ≥ 3. This problem could be solved, for chirality in the strongest pos-
sible sense:

Theorem . In every dimension at least 3, there exists a closed, connected, ori-
entable, smooth manifold that does not admit a continuous map to itself with
degree −1.

The proof was done in two steps:

1. I constructed a series of examples in every odd dimension ≥ 3, thereby
identifying a new obstruction to orientation reversal.

2. In even dimensions I used that sometimes cartesian products of chiral
manifolds are again chiral.

The examples in odd dimensions are all aspherical manifolds, i. e. Eilenberg-
MacLane spaces. Given a self-map of M, the effect on homology thus de-
pends only on the endomorphism of the fundamental group. The manifolds Mn

which were constructed have fundamental groups such that no endomorphism
of π1(M) induces −id on Hn(M) ≅ Z.
Since this construction relies so obviously on the fundamental group, the

next step is to ask for simply-connected examples in dimension ≥ 3. For these
manifolds, complete classification results are available up to dimension 6 (the
work of Perelman [4], Freedman [3], Barden [1] and Zhubr [7]). One can
deduce from the classification theorems that every smooth, simply-connected
manifold is smoothly amphicheiral in dimensions 3, 5 and 6. In dimension 4,
every simply-connected manifold is topologically amphicheiral if and only if its
signature is zero.
For every higher dimension, the existence of simply-connected, chiral mani-

folds could be proved.

Theorem . In every dimension at least 7, there exists a closed, simply-connected,
orientable, smooth manifold that does not admit a continuous map to itself with
degree −1.

I could use fiber bundles with fiber Sk−1 over Sk and again products of ex-
isting examples to cover all dimensions except 9, 10, 13 and 17. Since for these
remaining four dimensions, the aim still was to find chiral manifolds in the
strongest possible sense (i. e. without orientation reversing homotopy equival-
ences), I tried mainly techniques which use the Postnikov tower in some way.
In general, the task of producing new chiral manifolds is twofold:

1. Find a new mechanism/obstruction to orientation reversal. With the Post-
nikov tower, this means: Construct an appropriate finite tower of prin-
cipal K(π, n)-fibrations and fix an element in the integral homology of
one of the stages that is to be the image of the fundamental class of the
manifold. Then prove that (by the mechanism that lies in the particular
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construction) this homology class can never be mapped to its negative
under any self-map of a single Postnikov stage or of the partial Postnikov
tower.

2. Show that this obstruction can be realized by a manifold. In the case of
the Postnikov tower, one must prove that there is indeed a manifold with
the correct partial homotopy type and the correct image of the funda-
mental class in the Postnikov approximation. This step involves bordism
computations and surgery techniques.

Truly new mechanisms for chirality had to be found in dimensions 9 and
10; dimensions 13 and 17 could then be handled by products of the new ex-
amples and other chiral manifolds. The proof that a certain homology class is
never mapped to its negative under any self-map of a Postnikov stage/the par-
tial Postnikov tower relied on mod-3 Steenrod operations in dimension 10 and
a mixture of rational homotopy theory and additional integral information in
dimension 9.
In order to further shed light on the phenomenon of chirality, I considered

the question which manifolds are bordant to a chiral one. Apart from dimen-
sion 1 and 2, where there are no chiral manifolds, every oriented bordism class
contains chiral manifolds.

Theorem . In every dimension ≥ 3, every closed, smooth, oriented manifold is
oriented bordant to a manifold of this type which is connected and homotopically
chiral.

For proving theorem 3, previously constructed examples could be used or
extended except for one case: a chiral 4-dimensional manifold with signature
zero. Here, I exhibited finite groups π that have no outer automorphisms and
such that H4(π) contains elements of order > 2. The smallest possible group
of this type is the product G3 × G7, where Gp is a semidirect product of cyclic
groups Z/p ⋊ Z/(p − 1) and Z/(p − 1) is identified with Aut(Z/p).
Since inner automorphisms act trivially on group homology, it is then suffi-

cient to prove the existence of a 4-dimensional manifold M with fundamental
group π, signature 0 and the correct image of the fundamental class under a
2-equivalence M → K(π, 1).
The results so far have produced a number of chiral manifolds with various

constraints. Aiming in the opposite direction, it is also interesting to prove
amphicheirality of manifolds in nontrivial circumstances. A very interesting
class of manifolds in this context are products of lens spaces. For single lens
spaces, it is known which are amphicheiral by a diffeomorphism and by a ho-
motopy equivalence. Furthermore, it follows from more general statements in
the thesis about products of chiral manifolds that products of lens spaces of
different dimensions are homotopically chiral whenever each single factor is
homotopically chiral:

Example . Let L ∶= L1 × . . .× Lk be a product of lens spaces of pairwise different
dimensions. Then L is homotopically chiral if and only if this holds for each single
factor.
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This leads to the question what happens with lens spaces of the same dimen-
sion. I showed, using the modified surgery theory of Kreck, that the product
of two lens spaces can be smoothly amphicheiral, also in non-obvious cases
(which are: one of the factors is amphicheiral or the factors are diffeomorphic).

Theorem . Let r1 and r2 be coprime odd integers and let L1 and L2 be (any)
3-dimensional lens spaces with fundamental groups Z/r1 resp. Z/r2. Then the
product L1 × L2 is smoothly amphicheiral.

Conclusion

In chemistry, a molecule is called chiral if it cannot be superimposed on its
mirror image [5]. Another definition which captures the properties of flexible
and topologically complex molecules better is given by [2]: A molecule “that
can chemically change itself into its mirror image” is called achiral and chiral
if it cannot. Chiral molecules have the same physical properties like melting
and boiling points but they behave optically and chemically differently. With
this analogy in mind, it seems a very natural question to ask whether an ori-
entable manifold with its two orientations yields “the same” or “different” ob-
jects. Although the manifolds one usually imagines (spheres and 2-dimensional
surfaces) are amphicheiral, I could show that chiral manifolds exist in every di-
mension greater than two. Furthermore, my results give a little insight into the
variety of mechanisms that can obstruct orientation reversal in the homotopy
type. Aiming in the opposite direction, I showed that products of lens spaces
can have orientation-reversing diffeomorphisms in nontrivial circumstances.
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